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Optimal Auction

Simple Economics of Optimal Auctions

Optimal Auctions ≡ Third Degree Price Discrimination in
Monopolistic Marketa

aJeremy Bulow and John Roberts. “The simple economics of optimal
auctions”. In: The Journal of Political Economy (1989), pp. 1060–1090.
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Monopoly

• Single Seller

• Price set by Seller

• Profit maximization :price vs demand
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Price Discrimination

• First Degree:- Maximum price to each customer.

• Second Degree:- Charge prices based on quantity.

• Third Degree:- Separate market for different sets of
customers, different prices set for different groups.
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Third Degree Price Discrimination
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Optimal Auction
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Multi-armed bandits

Estimating the bias of a coin confidently

• Toss a coin with bias p, t times

• Random variables X1, · · · , Xt ∈ {0, 1}
• Estimator p̂ =

∑
iXi/t

• Hoeffding’s Inequality: P ((p̂− p) > ε) ≤ e−2tε2
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Multi-armed bandits

K armed bandit

• Samples from each arm distributed as a Bernoulli r.v

• Arm i is equivalent to a coin producing a mean reward µi

• Ni(t) : No. of times arm i is pulled in total t trials

• Si(t): sum of the rewards produced by arm i upto t trials

• µ̂i = Si(t)/Ni(t)

• Define UCB for µ̂i
+ =: µ̂i +

√
2 log t
Ni(t)

• Arm with highest UCB is pulled(Algorithm UCB1a)

aPeter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time
Analysis of the Multiarmed Bandit Problem”. In: Journal of Machine
Learning 47.2-3 (2002), pp. 235–256.
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Motivation

A hospital wishes to procure a large number of units of a
generic drug from a pool of suppliers.

• The efficiency of a drug is stochastic and the mean varies
across suppliers

• For each supplier: the cost of production per unit and the
capacity is private to him

• Hospital aims to learn the mean efficiency of the drug from
each supplier and minimize its cost
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Problem

Optimization Problem:

max

n∑
i=1

(
xiRqi − ti

)
s.t. xi ∈ {0, 1, . . . , k̂i} ,

∑
i

xi ≤ L

Challenges: Unknown qualities q′is, strategic costs c′is and
strategic capacities k′is

Goal: Design an incentive compatible MAB mechanism, to
procure L units of the item while learning the qualities of
the suppliers
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Auctions with known qualities

Theorem (BIC and IR characterization)

A mechanism is BIC and IR iff ∀i ∈ N ,
1. Xi(ĉi, k̂i; q) is non-increasing in ĉi, ∀q and ∀k̂i ∈ [ki, ki]
2. ρi(ĉi, k̂i; q) is non-negative, and non-decreasing in k̂i
3. ρi(ĉi, k̂i; q) = ρi(c̄i, k̂i; q) +

∫ ci
ĉi
Xi(z, k̂i; q)dz
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Auctions with known qualities

Theorem (Optimal payment structure)

Suppose the allocation rule maximizes

n∑
i=1

∫ c̄1

c1

. . .

∫ c̄n

cn

∫ k̄1

k1

. . .

∫ k̄n

kn

(
Rqi −

(
ci +

Fi(ci|ki)
fi(ci|ki)

))
xi(ci, ki, c−i, k−i)f1(c1, k1) . . . fn(cn, kn) dc1 . . . dcn dk1 . . . dkn

subject to monotonicity condition (1). Also suppose that the
payment is given by

Ti(ci, ki; q) = ciXi(ci, ki; q) +

∫ ci

ci

Xi(z, ki; q)dz

then such a payment scheme and allocation scheme constitute
an optimal auction satisfying BIC and IR.
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2D-OPT

Algorithm 1: 2D-OPT Mechanism

Input: ∀i, Bids bi = (ĉi k̂i), reward parameter R
Output: An optimal, DSIC, IR Mechanism M = (x, t)

1 Allocation is given by x = ALLOC(N, ĉ, k̂, q, L)
2 for i ∈ N && xi 6= 0 do
3 Gi := Rqi −Hi(bi)

4 y = ALLOC(N \ {i}, ĉ−i, (k̂−i − x−i), q−i, xi)
5 Payment to i, ti =∑

k∈N\{i}

yk max(G−1i (Rqk −Hk(bk)), c̄i) +
(
xi −

∑
k

yk
)
c̄i

6 end
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Auctions with unknown qualities

Well-behaved allocation Rule An allocation rule x is called a
Well Behaved Allocation Rule if:

• xji depends only on the agent’s bids and the reward
realization till j units and is non decreasing in terms of costs

• For any three distinct agents {α, β, γ} such that jth round
unit is allocated to β. A change of bid by agent α should
not transfer allocation of jth round unit from β to γ if other
quantities are fixed till j units

• For all reward realizations s, xi(ci, ki; s) is non-decreasing
with increase in capacity ki

Theorem

For a well behaved allocation rule, there exists a transformation
that produces the transformed allocation (x̃) and payment (t̃)
such that the resulting mechanism M = (x̃, t̃) is stochastic BIC
and IR.
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2D-UCB

Algorithm 2: 2D-UCB Mechanism

Input: ∀i ∈ N , bids ĉi ∈ [ci, ci], k̂i ∈ [ki, ki], parameter µ ∈ (0, 1), Reward parameter R
Output: A mechanism M = (x, t)

1 ∀i ∈ N , q̂+i = 1, q̂−i = 0, ni = 1

2 Obtain modified bids as (α, β)
3 = ((α1(ĉ1), β1(ĉ1), . . . , (αn(ĉn), βn(ĉn)) using resampling
4 Allocate one unit to all agents and estimate empirical quality q̂

5 q̂i = q̃i(i)/ni, q̂
+
i = q̂i +

√
1

2ni
ln(t)

6 for t = n to L do

7 Compute Hi = αi +
Fi(αi|k̂i)
fi(αi|k̂i)

8 Let i = arg max{js.t.kj>nj} Rq̂
+
j −Hj and Ĝi = Rq̂+i −Hi

9 if Ĝj > 0 then
10 Procure the unit from agent i and update q̂i

11 q̂+i = q̂i +
√

2
ni
ln(t)

12 else
13 break \\ Don’t allocate future units to anyone

14 Make payment to each agent i, T̃i = ĉini + Pi, where,

Pi =

{
1
µ
ni(c− ĉi), ifβi > ĉi

0, otherwise.
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Empirical Evaluations
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Observations:

• All the mechanisms approach 2D-OPT

• The performance of 2D-UCB is superior as it
approaches 2D-OPT faster
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Future Work

• An extension where allocation happens to subset of agents
at any round would be interesting

• The complete characterization of a learning algorithm in
this space is still open

• A theoretical analysis of regret is also a possible direction
of future work
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